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Considerations
What does it take to do in-situ PDF measurements?  

High Energy X-rays, Area Detectors

Why PDF?  

Catalytic reactions occur on the Å scale.

Modeling Structural Data:  How can we get more information from our 
data?  As experimentalists should we consult those with expertise in 
theory and computation?

Applications of in-situ measurements

Phase transitions

Chemical Reactions (Catalysis)

Solid State Reactions
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Area Detectors and the PDF method

Why use Area Detectors?
•With an area detector we can 
collect all data simultaneously.

•High energy X-rays are a necessity 
to probe large values of Q over 
small scattering angles(small 
detector areas).

•Counting statistics; averaging over 
a large solid angle allows adequate 
statistics for the contribution from 
Compton scattering to be accurately 
subtracted.

30 Å-1

Chupas, Qiu, Hanson, Lee, Grey, Billinge  Journal of Applied Crystallography 36 (2003) 1342.
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Nickel Collected with an Image Plate

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

•1 second counting

•A conventional measurement takes 
~8 hours… we need time resolution 
better than ~1minute for in-situ 
studies
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In-situ Powder Diffraction 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

•AlF3 undergoes a phase transition from 
a rhombohedrally distorted ReO3 
structure to a cubic structure at ~470 C.
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The Structure of α-AlF3
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Rotations About the 3-fold Axis
The rhombohedral distortion in α-AlF3 involves rotations of rigid octahedra
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Dynamics in AlF3 at High Temperature

Average PositionAverage bond length

PDF is a measure of the “instantaneous” structure, whereas Rietveld 
yields the time averaged position of atoms
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In-situ Pair Distribution Function Analysis

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Chupas, Chaudhuri, Hanson et al.  Journal of the American Chemical Society 126 (2004) 1342.
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Using a Combination of Analysis Methods

Rrietveld = 5.55 % Rrietveld = 5.80 %

RPDF  = 21.51 % RPDF = 18.60 %
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Evidence for Motion of Rigid AlF6 Octahedra 

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
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The experimental results are 
indicative of a dynamic model 
where the octahedra are rigid.

Average PositionAverage bond length
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Snapshots from the Molecular Dynamics 
Simulations

Chaudhuri, Chupas, Wilson, Madden, Grey Journal of Physical Chemistry 108 (2004) 3437.

•Molecular Dynamics simulations (Santanu Chaudhuri, Mark Wilson, 
Paul Madden)

•MD is ideally suited for comparison with total scattering methods.
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Snapshots from the MD

Chaudhuri, Chupas, Wilson, Madden, Grey Journal of Physical Chemistry 108 (2004) 3437.

•Molecular Dynamics simulations (Santanu Chaudhuri, Mark Wilson, 
Paul Madden)
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Partial Radial Distribution Functions from MD

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Al-F

Al-Al

MD allows the determination of partial 
pair correlations

•The Al-F bond distance does not show 
significant changes as a function of 
temperature

•However, broadening of the Al-F 
correlation is clearly observed.

•The Al-Al gradually increase as a 
function of temperature
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Correlation Functions from MD

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

rc = (rk - rl)/2 +rl

δ = ri - rc

Cdisp(t) = 〈δi(t) δi(0)〉

Cangle(t) = 〈δi(t)•δi(0)〉ˆ ˆ
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AlF3: An example of an Industrial Important 
Heterogeneous Catalyst

Catalytically inactive α-AlF3 Catalytically inactive β-AlF3

nano-AlF3 from PDF and MD
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Studying Local Structure During Chemical 
Reactions

Utilize a reaction cell designed to accurately control temperature and 
control the flow of gases over a sample.
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Ceria as a Catalyst
Ceria is a major component of “Three Way” Catalysts: Which 
Simultaneously treat the reducing pollutants CO and CxHy, and the 
oxidizing pollutant NOx

Oxidation: 2 CO + O2 → CO2

CxHy + O2 → CO2 + H2O

Reduction 2 CO + 2 NO → 2CO2 + N2

CxHy + NO → CO2 + H2O + N2
Ceria acts as an oxygen reservoir to 
stabilize the air/fuel ratio

Fluorite structure with variable 
composition

CeOx 1.75<x<2.0
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In-situ Reduction of Ceria

H2 O2 H2 O2 H2

600 ºC

700 ºCNo defect ordered 
phases identified;

ε-CeO1.770

δ-CeO1.817
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Studying Local Structure During Chemical 
Reactions
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Frenkel Defects in nano-CeO2

Mamontov and Egami Journal of Physics and Chemistry of Solids 61 (2000) 1345.

O1

O2
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Nano-CeO2: Changing Oxygen Content
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Oxygen is removed from the 01 site in nano-Ceria on Reduction
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Faster Area Detectors
For PDF measurements we need 
to be able to average of a large 
solid angle to obtain adequate 
counting statistics.

Faster Readout: 7-30 Hz

Image Plate ~1min.

CCD ~ 4 sec.



24

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Studying Local Structure During Chemical 
Reactions
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•Potential Hydrogen Storage Material
NaAlH4 → 2/3 Al  +  1/3 Na3AlH6 + H2 → NaH  +  Al  + 3/2 H2

Diffraction experiments with 1 second resolution necessary to isolate 
amorphous phase
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Studying Local Structure During Chemical 
Reactions
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Final Thoughts

•The simple conclusion: In-situ experiments are critical to correlate 
structure/property relationships.

What is needed to improve and expand the application of 
in-situ studies?
Instrumentation

High Energy X-rays, Detectors

Advances in Modeling

Incorporating advances in modeling techniques

Ancillary Equipment

Optimized control of the sample environment
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